Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Corrosion of phosphate‐enriched titanium oxide surface dental implants (TiUnite®) under in vitro inflammatory and hyperglycemic conditions

Identifieur interne : 005376 ( Main/Exploration ); précédent : 005375; suivant : 005377

Corrosion of phosphate‐enriched titanium oxide surface dental implants (TiUnite®) under in vitro inflammatory and hyperglycemic conditions

Auteurs : Regina L. W. Messer [Géorgie (pays), États-Unis] ; Francesca Seta [Géorgie (pays)] ; John Mickalonis [États-Unis] ; Yolanda Brown [Géorgie (pays)] ; Jill B. Lewis [Géorgie (pays)] ; John C. Wataha [États-Unis]

Source :

RBID : ISTEX:1646EAE8D51F43B487F50557F7AFEA654772AB07

Descripteurs français

English descriptors

Abstract

Endosseous dental implants use is increasing in patients with systemic conditions that compromise wound healing. Manufacturers recently have redesigned implants to ensure more reliable and faster osseointegration. One design strategy has been to create a porous phosphate‐enriched titanium oxide (TiUnite®) surface to increase surface area and enhance interactions with bone. In the current study, the corrosion properties of TiUnite® implants were studied in cultures of monocytic cells and solutions simulating inflammatory and hyperglycemic conditions. Furthermore, to investigate whether placement into bone causes enough mechanical damage to alter implant corrosion properties, the enhanced surface implants as well as machined titanium implants were placed into human cadaver mandibular bone, the bone removed, and the corrosion properties measured. Implant corrosion behavior was characterized by open circuit potentials, linear polarization resistance, and electrical impedance spectroscopy. In selected samples, THP1 cells were activated with lipopolysaccharide prior to implant exposure to simulate an inflammatory environment. No significant differences in corrosion potentials were measured between the TiUnite® implants and the machined titanium implants in previous studies. TiUnite® implants exhibited lower corrosion rates in all simulated conditions than observed in PBS, and EIS measurements revealed two time constants which shifted with protein‐containing electrolytes. In addition, the TiUnite® implants displayed a significantly lower corrosion rate than the machined titanium implants after placement into bone. The current study suggests that the corrosion risk of the enhanced oxide implant is lower than its machined surface titanium implant counterpart under simulated conditions of inflammation, elevated dextrose concentrations, and after implantation into bone. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2010

Url:
DOI: 10.1002/jbm.b.31548


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Corrosion of phosphate‐enriched titanium oxide surface dental implants (TiUnite®) under in vitro inflammatory and hyperglycemic conditions</title>
<author>
<name sortKey="Messer, Regina L W" sort="Messer, Regina L W" uniqKey="Messer R" first="Regina L. W." last="Messer">Regina L. W. Messer</name>
</author>
<author>
<name sortKey="Seta, Francesca" sort="Seta, Francesca" uniqKey="Seta F" first="Francesca" last="Seta">Francesca Seta</name>
</author>
<author>
<name sortKey="Mickalonis, John" sort="Mickalonis, John" uniqKey="Mickalonis J" first="John" last="Mickalonis">John Mickalonis</name>
</author>
<author>
<name sortKey="Brown, Yolanda" sort="Brown, Yolanda" uniqKey="Brown Y" first="Yolanda" last="Brown">Yolanda Brown</name>
</author>
<author>
<name sortKey="Lewis, Jill B" sort="Lewis, Jill B" uniqKey="Lewis J" first="Jill B." last="Lewis">Jill B. Lewis</name>
</author>
<author>
<name sortKey="Wataha, John C" sort="Wataha, John C" uniqKey="Wataha J" first="John C." last="Wataha">John C. Wataha</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1646EAE8D51F43B487F50557F7AFEA654772AB07</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1002/jbm.b.31548</idno>
<idno type="url">https://api.istex.fr/document/1646EAE8D51F43B487F50557F7AFEA654772AB07/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000B04</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000B04</idno>
<idno type="wicri:Area/Istex/Curation">000B04</idno>
<idno type="wicri:Area/Istex/Checkpoint">001E80</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001E80</idno>
<idno type="wicri:doubleKey">1552-4973:2010:Messer R:corrosion:of:phosphate</idno>
<idno type="wicri:Area/Main/Merge">005419</idno>
<idno type="wicri:Area/Main/Curation">005376</idno>
<idno type="wicri:Area/Main/Exploration">005376</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Corrosion of phosphate‐enriched titanium oxide surface dental implants (TiUnite®) under
<hi rend="italic">in vitro</hi>
inflammatory and hyperglycemic conditions</title>
<author>
<name sortKey="Messer, Regina L W" sort="Messer, Regina L W" uniqKey="Messer R" first="Regina L. W." last="Messer">Regina L. W. Messer</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Department of Oral Biology, Medical College of Georgia, Augusta</wicri:regionArea>
<wicri:noRegion>Augusta</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Correspondence address: Department of Oral Biology, Medical College of Georgia, Augusta</wicri:regionArea>
<wicri:noRegion>Augusta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seta, Francesca" sort="Seta, Francesca" uniqKey="Seta F" first="Francesca" last="Seta">Francesca Seta</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Department of Oral Biology, Medical College of Georgia, Augusta</wicri:regionArea>
<wicri:noRegion>Augusta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mickalonis, John" sort="Mickalonis, John" uniqKey="Mickalonis J" first="John" last="Mickalonis">John Mickalonis</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
<wicri:cityArea>Savannah River National Laboratory, Savannah River Nuclear Solutions, Aiken</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Brown, Yolanda" sort="Brown, Yolanda" uniqKey="Brown Y" first="Yolanda" last="Brown">Yolanda Brown</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Department of Oral Biology, Medical College of Georgia, Augusta</wicri:regionArea>
<wicri:noRegion>Augusta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lewis, Jill B" sort="Lewis, Jill B" uniqKey="Lewis J" first="Jill B." last="Lewis">Jill B. Lewis</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Department of Oral Biology, Medical College of Georgia, Augusta</wicri:regionArea>
<wicri:noRegion>Augusta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wataha, John C" sort="Wataha, John C" uniqKey="Wataha J" first="John C." last="Wataha">John C. Wataha</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>University of Washington, Department of Restorative Dentistry, Seattle</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Biomedical Materials Research Part B: Applied Biomaterials</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B: APPLIED BIOMATERIALS</title>
<idno type="ISSN">1552-4973</idno>
<idno type="eISSN">1552-4981</idno>
<imprint>
<biblScope unit="vol">92B</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="525">525</biblScope>
<biblScope unit="page" to="534">534</biblScope>
<biblScope unit="page-count">10</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2010-02">2010-02</date>
</imprint>
<idno type="ISSN">1552-4973</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1552-4973</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anova</term>
<term>Appl biomater</term>
<term>Average ecorr values</term>
<term>Biocare</term>
<term>Biomaterials</term>
<term>Biomaterials tiunite1 implant corrosion</term>
<term>Biomed</term>
<term>Biomed mater</term>
<term>Biomedical</term>
<term>Biomedical materials research part</term>
<term>Bone insertion</term>
<term>Cadaveric</term>
<term>Cadaveric bone</term>
<term>Cathodic</term>
<term>Clin</term>
<term>Clin implant dent relat</term>
<term>Corrosion</term>
<term>Corrosion properties</term>
<term>Corrosion rate</term>
<term>Corrosion rates</term>
<term>Corrosion resistance</term>
<term>Cyclic</term>
<term>Cyclic polarization curves</term>
<term>Dental implants</term>
<term>Dextrose</term>
<term>Ecorr</term>
<term>Ecorr values</term>
<term>Electrochemical</term>
<term>Electrolyte</term>
<term>Electrolyte solution</term>
<term>Error bars</term>
<term>Hyperglycemic</term>
<term>Hyperglycemic conditions</term>
<term>Impedance</term>
<term>Implant</term>
<term>Implantation</term>
<term>Insertion</term>
<term>Linear polarization resistance</term>
<term>Machined</term>
<term>Machined titanium</term>
<term>Machined titanium implant</term>
<term>Machined titanium implants</term>
<term>Mater</term>
<term>Messer</term>
<term>Mmpy</term>
<term>Monocytic</term>
<term>Monocytic cells</term>
<term>Negative hysteresis</term>
<term>Nobel biocare</term>
<term>Oral maxillofac implants</term>
<term>Oxide</term>
<term>Oxide surface</term>
<term>Savannah river</term>
<term>Standard deviation</term>
<term>Surface area</term>
<term>Tafel</term>
<term>Test period</term>
<term>Thp1</term>
<term>Thp1 cells</term>
<term>Titanium</term>
<term>Titanium implants</term>
<term>Titanium surface</term>
<term>Tiunite</term>
<term>Tiunite1</term>
<term>Tiunite1 implant</term>
<term>Tiunite1 implants</term>
<term>Tukey</term>
<term>Various electrolytes</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Anova</term>
<term>Appl biomater</term>
<term>Average ecorr values</term>
<term>Biocare</term>
<term>Biomaterials</term>
<term>Biomaterials tiunite1 implant corrosion</term>
<term>Biomed</term>
<term>Biomed mater</term>
<term>Biomedical</term>
<term>Biomedical materials research part</term>
<term>Bone insertion</term>
<term>Cadaveric</term>
<term>Cadaveric bone</term>
<term>Cathodic</term>
<term>Clin</term>
<term>Clin implant dent relat</term>
<term>Corrosion</term>
<term>Corrosion properties</term>
<term>Corrosion rate</term>
<term>Corrosion rates</term>
<term>Corrosion resistance</term>
<term>Cyclic</term>
<term>Cyclic polarization curves</term>
<term>Dental implants</term>
<term>Dextrose</term>
<term>Ecorr</term>
<term>Ecorr values</term>
<term>Electrochemical</term>
<term>Electrolyte</term>
<term>Electrolyte solution</term>
<term>Error bars</term>
<term>Hyperglycemic</term>
<term>Hyperglycemic conditions</term>
<term>Impedance</term>
<term>Implant</term>
<term>Implantation</term>
<term>Insertion</term>
<term>Linear polarization resistance</term>
<term>Machined</term>
<term>Machined titanium</term>
<term>Machined titanium implant</term>
<term>Machined titanium implants</term>
<term>Mater</term>
<term>Messer</term>
<term>Mmpy</term>
<term>Monocytic</term>
<term>Monocytic cells</term>
<term>Negative hysteresis</term>
<term>Nobel biocare</term>
<term>Oral maxillofac implants</term>
<term>Oxide</term>
<term>Oxide surface</term>
<term>Savannah river</term>
<term>Standard deviation</term>
<term>Surface area</term>
<term>Tafel</term>
<term>Test period</term>
<term>Thp1</term>
<term>Thp1 cells</term>
<term>Titanium</term>
<term>Titanium implants</term>
<term>Titanium surface</term>
<term>Tiunite</term>
<term>Tiunite1</term>
<term>Tiunite1 implant</term>
<term>Tiunite1 implants</term>
<term>Tukey</term>
<term>Various electrolytes</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Biomatériau</term>
<term>Corrosion</term>
<term>Oxyde</term>
<term>Titane</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Endosseous dental implants use is increasing in patients with systemic conditions that compromise wound healing. Manufacturers recently have redesigned implants to ensure more reliable and faster osseointegration. One design strategy has been to create a porous phosphate‐enriched titanium oxide (TiUnite®) surface to increase surface area and enhance interactions with bone. In the current study, the corrosion properties of TiUnite® implants were studied in cultures of monocytic cells and solutions simulating inflammatory and hyperglycemic conditions. Furthermore, to investigate whether placement into bone causes enough mechanical damage to alter implant corrosion properties, the enhanced surface implants as well as machined titanium implants were placed into human cadaver mandibular bone, the bone removed, and the corrosion properties measured. Implant corrosion behavior was characterized by open circuit potentials, linear polarization resistance, and electrical impedance spectroscopy. In selected samples, THP1 cells were activated with lipopolysaccharide prior to implant exposure to simulate an inflammatory environment. No significant differences in corrosion potentials were measured between the TiUnite® implants and the machined titanium implants in previous studies. TiUnite® implants exhibited lower corrosion rates in all simulated conditions than observed in PBS, and EIS measurements revealed two time constants which shifted with protein‐containing electrolytes. In addition, the TiUnite® implants displayed a significantly lower corrosion rate than the machined titanium implants after placement into bone. The current study suggests that the corrosion risk of the enhanced oxide implant is lower than its machined surface titanium implant counterpart under simulated conditions of inflammation, elevated dextrose concentrations, and after implantation into bone. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2010</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Géorgie (pays)</li>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Sud</li>
<li>Washington (État)</li>
</region>
</list>
<tree>
<country name="Géorgie (pays)">
<noRegion>
<name sortKey="Messer, Regina L W" sort="Messer, Regina L W" uniqKey="Messer R" first="Regina L. W." last="Messer">Regina L. W. Messer</name>
</noRegion>
<name sortKey="Brown, Yolanda" sort="Brown, Yolanda" uniqKey="Brown Y" first="Yolanda" last="Brown">Yolanda Brown</name>
<name sortKey="Lewis, Jill B" sort="Lewis, Jill B" uniqKey="Lewis J" first="Jill B." last="Lewis">Jill B. Lewis</name>
<name sortKey="Messer, Regina L W" sort="Messer, Regina L W" uniqKey="Messer R" first="Regina L. W." last="Messer">Regina L. W. Messer</name>
<name sortKey="Seta, Francesca" sort="Seta, Francesca" uniqKey="Seta F" first="Francesca" last="Seta">Francesca Seta</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Messer, Regina L W" sort="Messer, Regina L W" uniqKey="Messer R" first="Regina L. W." last="Messer">Regina L. W. Messer</name>
</noRegion>
<name sortKey="Mickalonis, John" sort="Mickalonis, John" uniqKey="Mickalonis J" first="John" last="Mickalonis">John Mickalonis</name>
<name sortKey="Wataha, John C" sort="Wataha, John C" uniqKey="Wataha J" first="John C." last="Wataha">John C. Wataha</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005376 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 005376 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:1646EAE8D51F43B487F50557F7AFEA654772AB07
   |texte=   Corrosion of phosphate‐enriched titanium oxide surface dental implants (TiUnite®) under in vitro inflammatory and hyperglycemic conditions
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022